建筑結構形式一般有木結構、砌體結構、底部框架抗震墻的砌體結構、框架結構、框架剪力墻結構、剪力墻結構、框架剪力墻核心筒結構、鋼結構等等。高層建筑常采用框架、框剪、剪力墻這幾種結構形式。
全部5個回答>高層建筑結構體系有哪些? 高層建筑結構體系有哪些各有什么特點
155****5536 | 2019-04-17 16:28:58
已有3個回答
-
141****8667
高層建筑有以下幾種結構形式:
查看全文↓ 2019-04-17 16:29:15
框架結構:多梁柱組成,空間靈活,但抗風、抗震能力弱,多用于公共建筑,且大多為多層建筑高層,超高層建筑中并不常見。
剪力墻結構體系:鋼筋混泥土剪力墻結構是指用鋼筋混泥土墻板來承受豎向荷載和水平荷載的空間結構,墻體亦同時作為維護和分隔構件,由于墻板街面慣性矩比較大,整體性能好,因此剪力墻體系的側向剛度很大,能夠承受相當大的水平荷載,剪力墻結構體系抗側力能力強,變形小,抗震能力好。
框架-剪力墻結構:框架-剪力墻是一種在框架結構中適當位置布置適當?shù)募袅π纬傻慕Y構體系,各種框架和各片剪力墻是抗側力構件,在豎向荷載下兩者承擔各自傳遞范圍內的樓面荷載。 -
133****3281
目前國內高層建筑的四大結構體系:框架結構、剪力墻結構、框架剪力墻結構和筒體結構。
查看全文↓ 2019-04-17 16:29:10
高層建筑結構體系設計特點分別是:
(一)水平力是設計主要因素
在低層和多層房屋結構中,往往是以重力為代表的豎向荷載控制著結構設計。而在高層建筑中,盡管豎向荷載仍對結構設計產生重要影響,但水平荷載卻起著決定性作用。因為建筑自重和樓面使用荷載在豎向構件中所引起的軸力和彎矩的數(shù)值,僅與建筑高度的一次方成正比;而水平荷載對結構產生的傾覆力矩、以及由此在豎向構件中所引起的軸力,是與建筑高度的兩次方成正比。另一方面,對一定高度建筑來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數(shù)值是隨著結構動力性的不同而有較大的變化。
(二)側移成為控指標
與低層或多層建筑不同,結構側移已成為高層結構設計中的關鍵因素。隨著建筑高度的增加,水平荷載下結構的側向變形迅速增大,與建筑高度H的4次方成正比(△=qH4/8EI)。
另外,高層建筑隨著高度的增加、輕質高強材料的應用、新的建筑形式和結構體系的出現(xiàn)、側向位移的迅速增大,在設計中不僅要求結構具有足夠的強度,還要求具有足夠的抗推剛度,使結構在水平荷載下產生的側移被控制在某一限度之內,否則會產生以下情況:
1.因側移產生較大的附加內力,尤其是豎向構件,當側向位移增大時,偏心加劇,當產生的附加內力值超過一定數(shù)值時,將會導致房屋側塌。 -
157****4550
高層建筑結構體系與宏觀受力特點
查看全文↓ 2019-04-17 16:29:06
高層建筑**新高度
哈利法塔,838m,建成 DCH塔,1145m,在建 王國塔,1007m ,在建
結構體系簡述
懸臂柱體系(傳統(tǒng)高層建筑結構體系)
傳統(tǒng)高層建筑可整體看作一根巨型的懸臂柱;
在實心的巨型懸臂柱中,通過不同的空間開洞方式形 成不同的結構體系,例如框架結構、剪力墻結構、框 剪結構、框筒結構、巨型框架-核心筒等等;
高層建筑結構屬于特殊的空間結構,樓蓋結構將所 有豎向構件(筒體、剪力墻、框架柱、支撐)連成 整體,實現(xiàn)共同工作;
在水平力(風、地震)作用下,整體結構具有懸臂 柱內力分布特點—彎矩、剪力沿根部方向逐漸增大, 根部彎矩、剪力**大。
索作為主抗側力構件的超高層建筑 DCH塔屬于索作為主抗側力構件的新型超 高層建筑,有別于傳統(tǒng)超高層建筑:
索作為第一抗側力主構件;
水平力作用下,筒體不具有懸臂柱內力 分布特點;由于索的存在,筒體**大彎 矩出現(xiàn)在中部,非根部;
抵抗水平力由受拉側索、筒體、受壓側 索共同承擔;
常見高層建筑結構體系
常見高層建筑結構體系如下:
250m以上高層建筑結構體系
高度超過250 m 的超高層建筑 結構,一般采用框架-核心筒、 框筒-核心筒、巨型框架-核心筒 和巨型框架-核心筒-巨型支撐4 種結構體系;
框架-核心筒、框筒-核心筒適 用于高度250 ~ 400 m 的超高 層建筑;
巨型框架-核心筒、巨型框架- 核心筒-巨型支撐適用于高度300 m 以上的超高層建筑。
上海中心結構體系
塔樓抗側力體系為巨型框架- 核心筒-外伸臂結構體系; 在8 個機電層區(qū)布置6 道兩 層高的外伸臂桁架和8 道箱 形空間環(huán)形桁架。 由箱形空間環(huán)形桁架和巨柱 形成外圍巨型框架
高層建筑結構宏觀受力特點
高層建筑設計中,水平荷 載(作用)是主要荷載,結 構高度和抵抗側移是設計的 主要矛盾; 隨結構高度增加,在水平 力作用下,側向位移增加** 快,其次是彎矩、軸力。
用于承擔重力荷載的結構 材料用量,與房屋層數(shù)成線 性比例增加; 其中用于樓蓋結構的材料 用量大體是定值,幾乎與結 構層數(shù)無關; 用于墻、柱等豎向承重構 件的材料用量,則隨房屋的 層數(shù)比例增長; 用于抵抗水平側力的結構 材料數(shù)量,則按房屋層數(shù)二 次方的關系曲線急劇增長。
高層建筑結構設計指導思想
結構的均勻對稱性
結構的對稱性
結構的對稱性指高層建筑中抗側力的主體結構對稱; 對稱的建筑容易實現(xiàn)結構的對稱性; 不對稱的建筑如平面形狀L形、T形、S形等高層建筑, 需進行合理的結構布置(如筒體、剪力墻的合理布 置),設法調整的剛心與建筑質心、平面形心盡量 接近,實現(xiàn)結構的基本對稱; 結構較大不對稱,引起水平力下較大扭轉變形,不 利非結構構件如填充墻、幕墻正常工作,結構成本 較大增加。
結構的均勻性
主體抗側力結構兩個主軸方向的剛度接近、變形特 性接近; 主體抗側力結構沿豎向斷面、構成變化比較均勻, 盡量減少突變。
主要體現(xiàn)—層剛度盡量減少突變, 層剛度突變(增大或減小過大),容易應力集中, 一般伴隨抗剪承載力突變,引起薄弱層出現(xiàn); 主體抗側力結構平面布置,同一主軸方向各片抗側 力結構剛度均勻,避免設置某一、兩片剛度特別大 而延性較差的結構,如長窄的實體剪力墻。
個別構件剛度巨大,容易應力集中,首先破壞,從 而形成逐個擊破,無法發(fā)揮整體結構的協(xié)調工作。盡量做到中央核心與周邊結構剛度協(xié)調均勻,保證 主體結構具有較好扭轉剛度,避免扭轉變形過大, 有利于控制扭轉周期比、扭轉位移比。 如剪力墻結構中剪力墻盡量周邊、均勻布置,結構 中部剪力墻滿足重力荷載要求。
荷載的傳力直接
重力荷載的傳力直接
傳力路徑:荷載(集中、線、面)通過樓蓋的板、 梁,將重力荷載傳至豎向構件墻、柱,后由豎向構 件傳至基礎,再由基礎傳至地基。
樓屋蓋結構布置應盡量使重力荷載以**短路徑傳至 豎向構件墻、柱; 豎向構件的布置應盡量使其在重力荷載作用下壓應 力水平接近均勻,減少豎向構件之間的壓應力二次 轉移。
如核心筒墻肢壓應力水平差異較大,重力荷 載作用下連梁有較大的內力,墻肢通過連梁進行壓 應力二次傳遞,應避免;轉換結構的布置,應盡量使上部結構豎向構件傳來 的重力荷載通過轉換層一次至多二次轉換,能傳遞 到下部結構的豎向構件。
相關問題
-
答
-
答
目前國內高層建筑的四大結構體系:框架結構、剪力墻結構、框架剪力墻結構和筒體結構。 高層建筑結構體系設計特點分別是: (一)水平力是設計主要因素 在低層和多層房屋結構中,往往是以重力為代表的豎向荷載控制著結構設計。而在高層建筑中,盡管豎向荷載仍對結構設計產生重要影響,但水平荷載卻起著決定性作用。因為建筑自重和樓面使用荷載在豎向構件中所引起的軸力和彎矩的數(shù)值,僅與建筑高度的一次方成正比;而水平荷載對結構產生的傾覆力矩、以及由此在豎向構件中所引起的軸力,是與建筑高度的兩次方成正比。另一方面,對一定高度建筑來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數(shù)值是隨著結構動力性的不同而有較大的變化?! ?二)側移成為控指標 與低層或多層建筑不同,結構側移已成為高層結構設計中的關鍵因素。隨著建筑高度的增加,水平荷載下結構的側向變形迅速增大,與建筑高度H的4次方成正比(△=qH4/8EI)?! ×硗?,高層建筑隨著高度的增加、輕質高強材料的應用、新的建筑形式和結構體系的出現(xiàn)、側向位移的迅速增大,在設計中不僅要求結構具有足夠的強度,還要求具有足夠的抗推剛度,使結構在水平荷載下產生的側移被控制在某一限度之內,否則會產生以下情況: 1.因側移產生較大的附加內力,尤其是豎向構件,當側向位移增大時,偏心加劇,當產生的附加內力值超過一定數(shù)值時,將會導致房屋側塌?! ?.使居住人員感到不適或驚慌。 3.使填充墻或建筑裝飾開裂或損壞,使機電設備管道損壞,使電梯軌道變型造成不能正常運行?! ?.使主體結構構件出現(xiàn)大裂縫,甚至損壞?! ?三)抗震設計要求更高 有抗震設防的高層建筑結構設計,除要考慮正常使用時的豎向荷載、風荷載外,還必須使結構具有良好的抗震性能,做到小震不壞、大震不倒?! ?四)減輕高層建筑自重比多層建筑更為重要 高層建筑減輕自重比多層建筑更有意義。從地基承載力或樁基承載力考慮,如果在同樣地基或樁基的情況下,減輕房屋自重意昧著不增加基礎造價和處理措施,可以多建層數(shù),這在軟弱土層有突出的經濟效益?! 〉卣鹦c建筑的重量成正比,減輕房屋自重是提高結構抗震能力的有效辦法。高層建筑重量大了,不僅作用于結構上的地震剪力大,還由于重心高地震作用傾覆力矩大,對豎向構件產生很大的附加軸力,從而造成附加彎矩更大。 (五)軸向變形不容忽視 采用框架體系和框架——剪力墻體系的高層建筑中,框架中柱的軸壓應力往往大于邊柱的軸壓應力,中柱的軸向壓縮變形大于邊柱的軸向壓縮變形。當房屋很高時,此種軸向變形的差異將會達到較大的數(shù)值,其后果相當于連續(xù)梁中間支座沉陷,從而使連續(xù)梁中間支座處的負彎矩值減小,跨中正彎矩值和端支座負彎矩值增大。 (六)概念設計與理論計算同樣重要 抗震設計可以分為計算設計和概念設計兩部分。高層建筑結構的抗震設計計算是在一定的假想條件下進行的,盡管分析手段不斷提高,分析的原則不斷完善,但由于地震作用的復雜性和不確定性,地基土影響的復雜性和結構體系本身的復雜性,可能導致理論分析計算和實際情況相差數(shù)倍之多,尤其是當結構進入彈塑性階段之后,會出現(xiàn)構件局部開裂甚至破壞,這時結構已很難用常規(guī)的計算原理去進行分析。實踐表明,在設計中把握好高層建筑的概念設計也是很重要的。
全部4個回答> -
答
目前國內高層建筑的四大結構體系:框架結構、剪力墻結構、框架剪力墻結構和筒體結構。 高層建筑結構體系設計特點分別是: (一)水平力是設計主要因素 在低層和多層房屋結構中,往往是以重力為代表的豎向荷載控制著結構設計。而在高層建筑中,盡管豎向荷載仍對結構設計產生重要影響,但水平荷載卻起著決定性作用。因為建筑自重和樓面使用荷載在豎向構件中所引起的軸力和彎矩的數(shù)值,僅與建筑高度的一次方成正比;而水平荷載對結構產生的傾覆力矩、以及由此在豎向構件中所引起的軸力,是與建筑高度的兩次方成正比。另一方面,對一定高度建筑來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數(shù)值是隨著結構動力性的不同而有較大的變化。 (二)側移成為控指標 與低層或多層建筑不同,結構側移已成為高層結構設計中的關鍵因素。隨著建筑高度的增加,水平荷載下結構的側向變形迅速增大,與建筑高度H的4次方成正比(△=qH4/8EI)?! ×硗猓邔咏ㄖS著高度的增加、輕質高強材料的應用、新的建筑形式和結構體系的出現(xiàn)、側向位移的迅速增大,在設計中不僅要求結構具有足夠的強度,還要求具有足夠的抗推剛度,使結構在水平荷載下產生的側移被控制在某一限度之內,否則會產生以下情況: 1.因側移產生較大的附加內力,尤其是豎向構件,當側向位移增大時,偏心加劇,當產生的附加內力值超過一定數(shù)值時,將會導致房屋側塌?! ?.使居住人員感到不適或驚慌?! ?.使填充墻或建筑裝飾開裂或損壞,使機電設備管道損壞,使電梯軌道變型造成不能正常運行?! ?.使主體結構構件出現(xiàn)大裂縫,甚至損壞。 (三)抗震設計要求更高 有抗震設防的高層建筑結構設計,除要考慮正常使用時的豎向荷載、風荷載外,還必須使結構具有良好的抗震性能,做到小震不壞、大震不倒。 (四)減輕高層建筑自重比多層建筑更為重要 高層建筑減輕自重比多層建筑更有意義。從地基承載力或樁基承載力考慮,如果在同樣地基或樁基的情況下,減輕房屋自重意昧著不增加基礎造價和處理措施,可以多建層數(shù),這在軟弱土層有突出的經濟效益。 地震效應與建筑的重量成正比,減輕房屋自重是提高結構抗震能力的有效辦法。高層建筑重量大了,不僅作用于結構上的地震剪力大,還由于重心高地震作用傾覆力矩大,對豎向構件產生很大的附加軸力,從而造成附加彎矩更大。 (五)軸向變形不容忽視 采用框架體系和框架——剪力墻體系的高層建筑中,框架中柱的軸壓應力往往大于邊柱的軸壓應力,中柱的軸向壓縮變形大于邊柱的軸向壓縮變形。當房屋很高時,此種軸向變形的差異將會達到較大的數(shù)值,其后果相當于連續(xù)梁中間支座沉陷,從而使連續(xù)梁中間支座處的負彎矩值減小,跨中正彎矩值和端支座負彎矩值增大。 (六)概念設計與理論計算同樣重要 抗震設計可以分為計算設計和概念設計兩部分。高層建筑結構的抗震設計計算是在一定的假想條件下進行的,盡管分析手段不斷提高,分析的原則不斷完善,但由于地震作用的復雜性和不確定性,地基土影響的復雜性和結構體系本身的復雜性,可能導致理論分析計算和實際情況相差數(shù)倍之多,尤其是當結構進入彈塑性階段之后,會出現(xiàn)構件局部開裂甚至破壞,這時結構已很難用常規(guī)的計算原理去進行分析。實踐表明,在設計中把握好高層建筑的概念設計也是很重要的。
全部3個回答> -
答
目前國內高層建筑的四大結構體系:框架結構、剪力墻結構、框架剪力墻結構和筒體結構。 高層建筑結構體系設計特點分別是: (一)水平力是設計主要因素 在低層和多層房屋結構中,往往是以重力為代表的豎向荷載控制著結構設計。而在高層建筑中,盡管豎向荷載仍對結構設計產生重要影響,但水平荷載卻起著決定性作用。因為建筑自重和樓面使用荷載在豎向構件中所引起的軸力和彎矩的數(shù)值,僅與建筑高度的一次方成正比;而水平荷載對結構產生的傾覆力矩、以及由此在豎向構件中所引起的軸力,是與建筑高度的兩次方成正比。另一方面,對一定高度建筑來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數(shù)值是隨著結構動力性的不同而有較大的變化。 (二)側移成為控指標 與低層或多層建筑不同,結構側移已成為高層結構設計中的關鍵因素。隨著建筑高度的增加,水平荷載下結構的側向變形迅速增大,與建筑高度H的4次方成正比(△=qH4/8EI)。 另外,高層建筑隨著高度的增加、輕質高強材料的應用、新的建筑形式和結構體系的出現(xiàn)、側向位移的迅速增大,在設計中不僅要求結構具有足夠的強度,還要求具有足夠的抗推剛度,使結構在水平荷載下產生的側移被控制在某一限度之內,否則會產生以下情況: 1.因側移產生較大的附加內力,尤其是豎向構件,當側向位移增大時,偏心加劇,當產生的附加內力值超過一定數(shù)值時,將會導致房屋側塌。 2.使居住人員感到不適或驚慌。 3.使填充墻或建筑裝飾開裂或損壞,使機電設備管道損壞,使電梯軌道變型造成不能正常運行。 4.使主體結構構件出現(xiàn)大裂縫,甚至損壞。 (三)抗震設計要求更高 有抗震設防的高層建筑結構設計,除要考慮正常使用時的豎向荷載、風荷載外,還必須使結構具有良好的抗震性能,做到小震不壞、大震不倒。 (四)減輕高層建筑自重比多層建筑更為重要 高層建筑減輕自重比多層建筑更有意義。從地基承載力或樁基承載力考慮,如果在同樣地基或樁基的情況下,減輕房屋自重意昧著不增加基礎造價和處理措施,可以多建層數(shù),這在軟弱土層有突出的經濟效益。 地震效應與建筑的重量成正比,減輕房屋自重是提高結構抗震能力的有效辦法。高層建筑重量大了,不僅作用于結構上的地震剪力大,還由于重心高地震作用傾覆力矩大,對豎向構件產生很大的附加軸力,從而造成附加彎矩更大。 (五)軸向變形不容忽視 采用框架體系和框架——剪力墻體系的高層建筑中,框架中柱的軸壓應力往往大于邊柱的軸壓應力,中柱的軸向壓縮變形大于邊柱的軸向壓縮變形。當房屋很高時,此種軸向變形的差異將會達到較大的數(shù)值,其后果相當于連續(xù)梁中間支座沉陷,從而使連續(xù)梁中間支座處的負彎矩值減小,跨中正彎矩值和端支座負彎矩值增大。 (六)概念設計與理論計算同樣重要 抗震設計可以分為計算設計和概念設計兩部分。高層建筑結構的抗震設計計算是在一定的假想條件下進行的,盡管分析手段不斷提高,分析的原則不斷完善,但由于地震作用的復雜性和不確定性,地基土影響的復雜性和結構體系本身的復雜性,可能導致理論分析計算和實際情況相差數(shù)倍之多,尤其是當結構進入彈塑性階段之后,會出現(xiàn)構件局部開裂甚至破壞,這時結構已很難用常規(guī)的計算原理去進行分析。實踐表明,在設計中把握好高層建筑的概念設計也是很重要的。
全部4個回答> -
答
目前國內高層建筑的四大結構體系:框架結構、剪力墻結構、框架剪力墻結構和筒體結構?! 「邔咏ㄖY構體系設計特點分別是: (一)水平力是設計主要因素 在低層和多層房屋結構中,往往是以重力為代表的豎向荷載控制著結構設計。而在高層建筑中,盡管豎向荷載仍對結構設計產生重要影響,但水平荷載卻起著決定性作用。因為建筑自重和樓面使用荷載在豎向構件中所引起的軸力和彎矩的數(shù)值,僅與建筑高度的一次方成正比;而水平荷載對結構產生的傾覆力矩、以及由此在豎向構件中所引起的軸力,是與建筑高度的兩次方成正比。另一方面,對一定高度建筑來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數(shù)值是隨著結構動力性的不同而有較大的變化?! ?二)側移成為控指標 與低層或多層建筑不同,結構側移已成為高層結構設計中的關鍵因素。隨著建筑高度的增加,水平荷載下結構的側向變形迅速增大,與建筑高度H的4次方成正比(△=qH4/8EI)?! ×硗猓邔咏ㄖS著高度的增加、輕質高強材料的應用、新的建筑形式和結構體系的出現(xiàn)、側向位移的迅速增大,在設計中不僅要求結構具有足夠的強度,還要求具有足夠的抗推剛度,使結構在水平荷載下產生的側移被控制在某一限度之內,否則會產生以下情況: 1.因側移產生較大的附加內力,尤其是豎向構件,當側向位移增大時,偏心加劇,當產生的附加內力值超過一定數(shù)值時,將會導致房屋側塌。 2.使居住人員感到不適或驚慌。 3.使填充墻或建筑裝飾開裂或損壞,使機電設備管道損壞,使電梯軌道變型造成不能正常運行?! ?.使主體結構構件出現(xiàn)大裂縫,甚至損壞。 (三)抗震設計要求更高 有抗震設防的高層建筑結構設計,除要考慮正常使用時的豎向荷載、風荷載外,還必須使結構具有良好的抗震性能,做到小震不壞、大震不倒?! ?四)減輕高層建筑自重比多層建筑更為重要 高層建筑減輕自重比多層建筑更有意義。從地基承載力或樁基承載力考慮,如果在同樣地基或樁基的情況下,減輕房屋自重意昧著不增加基礎造價和處理措施,可以多建層數(shù),這在軟弱土層有突出的經濟效益?! 〉卣鹦c建筑的重量成正比,減輕房屋自重是提高結構抗震能力的有效辦法。高層建筑重量大了,不僅作用于結構上的地震剪力大,還由于重心高地震作用傾覆力矩大,對豎向構件產生很大的附加軸力,從而造成附加彎矩更大?! ?五)軸向變形不容忽視 采用框架體系和框架——剪力墻體系的高層建筑中,框架中柱的軸壓應力往往大于邊柱的軸壓應力,中柱的軸向壓縮變形大于邊柱的軸向壓縮變形。當房屋很高時,此種軸向變形的差異將會達到較大的數(shù)值,其后果相當于連續(xù)梁中間支座沉陷,從而使連續(xù)梁中間支座處的負彎矩值減小,跨中正彎矩值和端支座負彎矩值增大?! ?六)概念設計與理論計算同樣重要 抗震設計可以分為計算設計和概念設計兩部分。高層建筑結構的抗震設計計算是在一定的假想條件下進行的,盡管分析手段不斷提高,分析的原則不斷完善,但由于地震作用的復雜性和不確定性,地基土影響的復雜性和結構體系本身的復雜性,可能導致理論分析計算和實際情況相差數(shù)倍之多,尤其是當結構進入彈塑性階段之后,會出現(xiàn)構件局部開裂甚至破壞,這時結構已很難用常規(guī)的計算原理去進行分析。實踐表明,在設計中把握好高層建筑的概念設計也是很重要的。
全部3個回答>